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ABSTRACT

Title of Thesis: Diffusion of Heavy Ions in the Solar Corona

Yves Alloucherie, Doctor of Philosophy, 1967

Thesis directed by: Research Professor DerekA. Tidman

The steady-state diffusive motion of ionized atoms in the solar

corona has been investigated theoretically, with special emphasis on

relating the flow velocity and density of these ions to the flow proper-

ties of the ionized hydrogen background, under the assumption that

the sun and its environment exhibits total spherical symmetry.

The basic approach taken in this study was to regard the ions

as "test particles" immersed in, and interacting with, the electrons

and protons making up the bulk of the corona. Two forms of the mo-

mentum equation were first derived for the ions, taking into account

the effect of the following forces: the solar gravitational force, the

kinetic friction force with the background electrons and protons, the

electric force due to the gravity induced charge polarization of the

electrons and protons, and the pressure gradient force. The first

form of the equation is applicable to "cool" ions which have not yet

reached thermal equilibrium with the "hot" background, while the

second form assumes temperature equality between the ions and the



I
I
I

I

I
I

I
I

I
I
I

I
I

I
I

i

I
I

protons. The momentum equation contains, as variable parameters,

the density, velocity, and temperature of the electrons and protons.

Since the ions have been assumed to be "test particles", they do not

appreciably disturb the state of the ionized hydrogen background, and

the above parameters may be obtained from existing dynamical models

of the solar corona, which were obtained by neglecting the presence

of the ions. Two such models have been specifically considered in

this thesis: the one-fluid model of Parker (which postulates identical

temperatures for the electrons and protons), and the two-fluid model

of Sturrock and Hartle (which postulates different temperatures for

the electrons and protons). The momentum equation was then com-

bined with the equation of conservation of mass for the ions to give a

first-order, non-linear differential equation for the flow velocity of

the ions.

As a first step in the solution, an approximate, asymptotic

relation was then derived, giving the physical conditions under which

ionized atoms may either diffuse upward in the corona, remain at rest

in equilibrium, or fall down toward the solar interior. A representa-

tive sample of ions satisfying the condition of upward convection was

selected, and the velocity equation was solved numerically on a CDC

160-A computer for each one of these ions, using the model of Parker

and the model of Sturrock and Hartle. These results were combined

!
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with the equation of conservation of mass to give, as a function of

distance from the center of the sun, the relative abundance of these

ions in the corona. It was found that the ions considered in the sample

diffuse away from the sun with velocities somewhat lower than the

velocity of the hydrogen background; the relative abundance of the

ions, after a slight decrease near the bottom of the corona, increases

gradually and slowly with height.
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I. INTRODUCTION

A. Definition of the Problem

The problem discussed in this thesis is concerned with a theo-

retical treatment of the dynamical motion of heavy ions in the solar

corona. The expression "heavy ions" denotes any charged particles

of astrophysical interest more massive than electrons or protons.

The problem has three specific objectives: to discover whether or

I

I
I
I

l

not such heavy particles will move away from the sun or will remain

permanently trapped in its gravitational field, to obtain the flow ve-

locity of the ions as they diffuse through the solar corona, and to

find out how their relative abundances vary from point to point in the

space around the sun. In order to justify this work, a brief review

of the solar physics pertaining to the problem, as well as a number

of important general assumptions, will now be given.

I

I
I

I

I

Most textbooks on solar physics divide the sun and its environ-

ment into a number of distinct physical regions: the solar interior,

the photosphere, the chromosphere, and the corona which, extended,

becomes the solar wind {Kuiper, 1958). These are shown in Figure l

on page 2. The often quoted "solar radius"_® actually refers to the

radius of the outer edge of the photosphere, the "sharp" visible solar
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Figure I. Physical Regions of the Sun and its Environment

disk. In reality, the photosphere has a small thickness of its own,

but this only amounts to about 0.001"_®. The chromosphere, divided

between a lower and an upper region, reaches a height of about 2 x 109

cm above the solar radius _o and represents the main transition re-

gion in temperature between the comparatively cool photosphere

(I-_ 4500 OK) and the much hotter lower or inner corona ('P_ l x 106 OK).

2



The corona is itself divided into an inner corona, a medium corona,

and an outer corona. According to Kuiper, the outer corona ends at

_,. =3_O_ where it then becomes synonymous with the solar wind, which

extends to infinity.

I
I

I

I
I
i
i

I

I
I

I
I

I
i

The physical and chemical composition of the sun and its environ-

ment may be investigated theoretically or experimentally.

In view of the opacity of the photosphere, the composition of the

solar interior has only been studied theoretically, since the only rele-

vant quantities which may be measured experimentally are its mass,

its volume, and its total energy output. Detailed physical and chemi-

cal information may still be obtained by applying the theory of stellar

interiors to the sun. The fundamental equations describing the state

of the solar interior have been solved under the assumption that one

gram of substance making up the solar interior consists of a mixture

of X gram of hydrogen, _" gram of helium, and :7 gram of all other,

heavier elements (Schwarzschild, 1946; Harrison, 1948; Keller, 1948;

Epstein,

veloped.

Y =0. 17, Z :0.01.

primarily of hydrogen,

1961; Kuiper, 1958); a number of different models were de-

Typical results were those obtained by Epstein: X =0.82,

The solar interior therefore consists, by mass,

with a small fraction of helium and traces of

other elements.
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The composition of the solar atmosphere (photosphere, chromo-

sphere, corona) has been extensively investigated experimentally, for

instance by studying the Fraunhofer lines of the solar electromagnetic

spectrum. According to Flammarion (1964), 21,835 such lines have

O O

been observed, varying in wavelength between 2975 A and 10218A;

these have allowed astronomers to identify the characteristic spectra

of most of the elements known on earth. Furthermore, the intensities

of these spectral lines has provided information on the quantitative

analysis of .the solar atmosphere. The main result of the chemical

analysis of the solar atmosphere is again the enormous preponderance

of hydrogen. The abundance of helium is estimated to be something

like 4 or 5 helium atoms for each 100 atoms of hydrogen.

In view of these results, it should now be clear that the dynami-

cal properties of the solar corona may, as a first approximation, be

investigated by assuming that it consists of ionized hydrogen only.

This was done by a number of researchers who showed that the solar

atmosphere is not static, but continuously expands away from the sun

in all directions to become, far away from the sun, the solar wind.

Two especially significant theoretical models of such a simplified

solar corona and solar wind, derived by Parker (1963) and Sturrock

andHartle (1966), willbe described in detail in Chapter III.

4



The next logical step in obtaining a more complete physical de-

scription of the dynamics of all the charged particles making up the

solar corona is to investigate the behavior of the heavier elements

(helium and others) which have so far been ignored. In view of the

inherent complexity of such a multi-fluid system, the scope of the prob-

lem treated in this thesis, previously defined by the three objectives

stated at the beginning of this chapter, will be narrowed by making

the following simplifying assumptions:

(I) We will limit our attention to the steady, time - independent,

continuous motion of particles away from the sun. Purely transient

phenomena, such as solar flares, coronal disturbances over sunspots,

and prominences, which will perturb this steady motion, will not be

considered.

(2) The complex phenomenon of solar rotation will also be

neglected. The sun is not a rigid body and its angular velocity is

greater at the equator than near the poles; in addition, there are indi-

cations that the angular velocity of the solar atmosphere varies with

height above the sun's surface. However, this assumption may be

justified by noting that, everywhere in the corona, the centripetal ac-

celeration on a particle due to solar rotation is much smaller than the

gravitational acceleration:

5



where:

_]. (angular velocity of the sun) _,

11_,., 2 x 10 cm

_n_,_3 x 10 3 cm/sec 2 at _.*, 2no

may be regarded as typical values.

3 x lO-6radians/sec

The two previous assumptions will have the effect of giving com-

plete spherical symmetry to our problem, which will therefore be re-

duced toa simpler one-dimensional case, with the radius_ as the

only independent variable.

(3) The division of the sun and its environment into a number

of layers, as shown previously in Figure I, is really too detailed for

our purpose since we are primarily interested, in this problem, in

the motion of the heavy ions in the corona and solar wind only; we are

not so such interested in the complex convective processes taking

place in the chromosphere. The following simpler model will there-

fore be adopted from now on, consisting of: a central spherical core,

with an external reference radius _o ( -_,_'_® }j combining together

the solar interior _ the photosphere, the chromosphere, and part of

the lower corona; and a spherical shell external to this central core,

combining together most of the corona and the solar wind. This agrees



with the basic model adopted by Parker, who selected the value _o

ii
= i0 cm.

(4) It will later be shown in Chapter III that the velocity pre-

dicted by Parker and Sturrock and Hartle for the electrons and pro-

tons making up the bulk of the solar wind keeps on increasing continu-

ously with increasing distances from the sun: the solar wind has

therefore no true "coasting velocity", although the rate of increase

of that velocity decreases with increasing distances from the sun. It

would therefore seem that, to obtain a mathematically complete solu-

tion, the diffusion velocity of the heavy ions would have to be obtained

for Jt o _t < _ In practice however, we are primarily interested

in the region of the solar system between the sun and the earth. If

the flow velocity of the solar wind electrons or protons is computed

at the earth's orbit around the sun (_ _- 150_o ) and is used as a

"reference velocity", it will be found that most of this velocity is

reached by the solar wind when it is still much closer to the sun. For

instance, typically, 50% to 60% of this reference velocity will be

reached for _ = 5_to , which will be taken as the upper limit of inte-

gration in our calculations.

(5) Finally, numerical calculations will not be made for all

the charged particles observed in the solar corona, but only for a

selected sample of special interest.

7



B. Approach to the Problem

In order to describe completely the flow properties of a typical

kind of heavy ions (such as, for example, the Fe XV ions) in the solar

corona, the motion of each such individual ion should be known. Let

us suppose that we isolate and identify a typical Fe XV ion, and attempt

to set up and solve the equation describing its motion in space. This

will require a knowledge of all the forces acting on that "test particle".

there will be a gravitational force due to the attraction of the central

solar core (described previously in Section A of this chapter) and all

the other particles in the solar atmosphere, an electric and a mag-

netic force due to the general background values of these field quanti-

ties, and friction forces due to the collisional interactions between the

ion and all the other particles in the corona. These other particles

will include not only the electrons and protons which make up thebulk

of the background material, but also all the other ions (Fe X, Fe XI,

Ni XVI, Ca XII, etc. ) and, finally, all the Fe XV ions except the test

particle. The exact description of the motion of a single test particle

would therefore require, as a prerequisite, a knowledge of the instan-

taneous position and velocity of all the other particles in the solar

corona. Since this information is not given explicitly, this approach



would only lead to an unmanageable system of coupled integro-differen-

tial equations of motion. However, it may clearly be seen from intui-

tion that such an exact dynamical description of our system is really

unnecessary, since it has already been noted in Section A above that

sufficient spectroscopic evidence exists to show that the general coro-

nal abundances of helium and heavier elements are very small compared

to the abundance of hydrogen.

A simplified and more realistic approach to solve the problem

will now be presented. This will be based on the following assumptions:

(1) Interactions between different species of heavy ions

(such as Fe XV and Ca XII) will be neglected.

(2) Interactions between different ions of the same species

will be neglected.

(3) The perturbing effects of the ions on the electrons and

protons will be small enough so that the results obtained by other

researchers (see Chapter Ill) for the flow of a coronal gas consisting

of ionized hydrogen only will remain unchanged.

It is then possible, with these additional assumptions, to uncouple

the various equations of motion at the start and to consider each ionic

species independently of the others.



The actual solution will be obtained in the following way:

(I) In Chapter If, two forms of the equation of motion de-

scribing the dynamical behavior of an arbitrary ion in the solar corona

will be derived:

(a}

postulating that

T, and "rt , the temperatures of the electrons and protons:

T, T,

(Note that we do not necessarily assume that 7". = TL • ) It will

later be shown in Chapter IV that this postulate is valid in the lower

regions of the corona, where the ions, rising from the much cooler

chromosphere, did not yet have time to reach thermal equilibrium

with the much hotter ionized hydrogen background.

The first form of this equation will be obtained by

"['3' the temperature of the ions, is much lower than

(b) The second form of this equation will be obtained

by postulating that the ions have reached thermal equilibrium with the

coronal protons:

T,.,T.

Here again, we do not necessarily assume that T, = T,.

be seen in Chapter III that Parker,

It will later

in deriving his ionized hydrogen

I0
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corona model, postulated that T i --T_. everywhere; on the other hand,

Sturrock and Hartle, in the derivation of their model, relaxed this

prescription and came to the conclusion that I', _'F'_. everywhere,

except at _. =_0 where 1". -- T,.. It will also later be shown that both

these models are based on the assumption that _.-_._ everywhere.

Finally, Mi_: M_. so that kinetic energies transformed into heat during

an electron-ion collision will be, in general, much lower than the

energies involved during a proton-ion collision. It therefore follows

that the ions will eventually reach thermal equilibrium with the pro-

tons rather than with the electrons, which explains the prescription

"r_ =T 2 used in the derivation of the second form of the equation of

motion. This form will later be shown to be valid in the outer re-

gions of the corona.

Both forms of the equation of motion will depend parametrically

on such quantities as the flow velocity of the electrons and protons,

their number densities, their temperatures, as well as on basic con-

stants such as the charge and mass of the ion, etc.

(2) In Chapter Ill, the theoretical models of an ionized-hydrogen

corona derived by Parker and Sturrock and Hartle will be described and

reviewed. Special emphasis will be placed on showing how these models
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may be used to compute the flow velocity, density, temperature and

pressure of the electrons and protons as a function of position in

space.

(3) Chapter IV, which deals with the solution of the equation

of motion derived previously in Chapter Ill, is divided into four sec-

tions:

(a) A general discussion will first be given. This will

include the derivation of an approximate asymptotic relationship giv-

ing the conditions under which a specific ion will either move away

from the sun, will remain stationary in equilibrium in the corona, or

will fall back deeper toward the solar interior.

(b) It has already been pointed out that the spectroscopic

emission lines originating in the corona are so numerous that most

elements found on the earth have been identified in the solar atmos-

phere. Many of these elements, and especially the heavier ones, may

be ionized in many states so that the total number of charged particle

species is very great. The purpose of this section is to choosel from

this large collection, a representative and reasonable sample of ions

to be actually used in calculations.

12



(c) Four sets of solutions will then be obtained in the

next two sections, corresponding to the two different models of the

corona and to the two thermal possibilities for the ions (before and

after thermal relaxation with the protons). The basic approach will

first consist in combining together the equation of motion with the

equation of conservation of mass to obtain a nonlinear differential

equation in the velocity only. This equation will then be integrated

numerically on a computer from 2t =2o to _ =52.o , using a relaxation

method (described in detail later) to obtain the correct boundary value

for the velocity at a = _-o . After the velocity has been obtained, the

equation of conservation of mass will again be used to find how the

abundances of the ions vary throughout the corona.

I
I

I
I

I
I

I
I
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C. Survey of Previous Work

A brief review of the theoretical results directly related to the

diffusion of heavy ions in the solar corona obtained previously by other

authors will now be presented. No attempt will be made to review

experimental work at this point; this will be done later.

It has already been mentioned that the theoretical models of the

corona derived by Parker (1963} and Sturrock and Hartle (1966) are

based on the assumption that the solar atmosphere consists of ionized

hydrogen only. In the fourth chapter of his book, where he showed

that the solar corona cannot be static but must expand outward contin-

uously, Parker however presented a brief discussion concerning the

relative abundances of heavy ions as a function of height in a hypo-

thetical static solar atmosphere; even though this atmosphere is,

strictly speaking, not static, but expanding, Parker's remarks may

be regarded to have some validity near the base of the corona, since

it will later be shown {in Chapter III) that the theoretical radial ex-

pansion velocities in that region are quite small, so that "quasi-static"

conditions may possibly be assumed to prevail there. He first showed,

using elementary statistical physics, that, in a state of complete static

14



equilibrium (and assuming that I", = T,. = T 3 , or thermal equilibrium

between the ionized hydrogen and the ions), the abundances of heavy

ions, relative to the ionized hydrogen background, will decrease

rapidly with height, since they have a scale height of the order of

-_]'3/_3 _(_-_ , and M,<_ M,_-'_ _j. Furthermore, he went on to say that

if this idealized "static" model corona is stirred vigorously for awhile

to produce a momentary homogeneous abundance of heavy ions, the re-

turn to equilibrium will be fairly rapid and the ions will settle down

quickly again: as an illustration, Parker mentioned the following case

of the downward drift of an alpha particle in a hydrogen corona of den-

sity /11 , temperature 7-, and gravitational acceleration _,. The

mean downward drift velocity _r_ for the alpha particle between colli-

sions will be '_z_sHe4. *, where _,He_ is the collision time for the

alpha particles. Near the base of the corona, MA, 109 particles /cm 3

and ttr3_,I km/sec if T_ 2 x 106 OK; at an altitude of 3 x 105 km in the

corona, t_A,107 particles/cm 3 and Arm,_50 km/see if -FL2 x 106 OK.

It therefore appears from these figures that vigorous stirring or ex-

pansion will be necessary to convect the ions upward and away from

This neglects the effect of the upward electric field on the alpha

particle due to the gravity induced charge separation effect be-

tween the electrons and protons. This will be discussed at

length in Chapter If.

15



the sun, and it becomes clear that a quantitative solution to the

problem will depend on the balance between the gravitational, elec-

tric, magnetic and friction forces acting on each ion.

The next step was taken by Jokipii (1967), who published a brief

account of his work in "The Solar Wind", edited by Robert J. Mackin, Jr.

and Marcia Neugebauer. The basic conceptual approach taken by

Jokipii was similar to the approach followed in this thesis. After

making the basic assumption of steady-state motion and perfect spheri-

can symmetry, he proceeded to study the dynamical motion of a tenuous

gas of heavy charged particles injected into a background of fully ion-

ized hydrogen flowing away from the sun. The rest of his treatment

was however different. He assumed that the mean free paths in the

corona were small enough for the diffusion equation of ordinary fluid

mechanics to be valid. The radial component of this equation (as gi-

ven by Jokipii but rewritten in our notation) was stated without proof

in the following form:

_,-_, - "r'_" ,J".._(_I_ - _i_I_,3 _ aT

ficients due to pressure,

+ _(M,I_.)_ "I-
_ L

,_[,_j/ivl,'_ , and -_l,/mL_ represent the diffusion coef-

thermal, and concentration gradients

16
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respectively and are slowly varying functions of rns/_; although no

specific mention is made to that effect in his paper, Jokipii apparently

assumed complete thermal equilibrium between the electrons, protons,

and heavy particles at all times:

The above diffusion equation was combined with the continuity

equation and solved to obtain values of (_-_5_/_,. and M_/_ z as a

function of the height (_-_ above the photosphere, using alpha parti-

cles as the heavy ions; two sets of values were obtained for M_/_a. ,

corresponding to the cases of perfect mixing and no mixing between

the alpha particles and the ionized hydrogen background. Jokipii does

not specifically state what functional relationships he assumed to de-

scribe I" =T(_.) and _. =m_0_ in order to find _ =_5(_-_ ; all his re-

sults were presented graphically only and are reproduced in Figure II

on page 18 of this thesis. A noteworthy aspect of these results lies in

the fact that the lower integration limit selected by Jokipii, _. = "_@

(radius of the photosphere) is lower than the value 7t = _-e selected

in this thesis: this explains the large variations in 7-, {_-_/_z

and _3/_i. near the lower integration limit, through the chromospheric

transition layers. On the other hand, his range of integration (A, 60,000

kin) is much smaller than ours (_ 4,000,000 kin), which extends into

17
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Figure II. Results of Jokipii for the Diffusion of

Alpha Particles in the Chromosphere
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the solar wind proper. To a certain extent then, his results may be

regarded as being complementary to those presented in this thesis:

the former describe the diffusion of heavy ions through a small re-

gion of the lower solar atmosphere with a high degree of detail, the

latter describe the diffusion of heavy ions through a much larger re-

gion of the solar atmosphere without attempting to investigate the

rapid changes taking place as the ions traverse the chromosphere.

Although the results of Jokipii may be regarded as describing

correctly the qualitative dynamical behavior of the alpha particles in

the chromosphere, it is felt that the treatment offered in this thesis

leads to a more accurate description of the diffusion of heavy ions in

the solar atmosphere. This follows from the following considerations:

(I) As it was recognized by Jokipii himself, the validity of

the diffusion equation of ordinary fluid mechanics that he used is ques-

tionable, especially in the outer corona and solar wind, where the

mean free paths become very large. (For instance, at _,2.5_., the

electron-proton m. f. p. _, 3 x 10 5 kin). One specific limitation of that

equation is that it is linear in the quantity (_-_); it will be shown in

Chapter II that this linear term is only the leading term of an infinite

power series in ( _-_j ). The linearized equation will be in error

unless the following condition is satisfied:
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It will later be shown that, contrary to one of Jokipii's

assumptions (who stated that, as _-_ao;_._,.), the quantity(_-_ )

tends to increase continuously with increasing _.

(2) Another serious limitation of Jokipii's work lies in his

neglect of the effect of the radial electric field due to gravity induced

charge separation between the electrons and protons on the heavy

ions. It will later be shown that this assumption is not even approxi-

matley valid in the lower chromosphere, and breaks down completely

as_t increases.

(3) It will later be shown in Chapter III that no single mathe-

matical model is adequate to represent the dynamical and thermal

behavior of the corona completely; Jokipii used only one such model,

I including the simplifying assumption that Tj = "_ ='_'$ =T everywhere.

I

I
I

I
I

I
I

I

(4) Finally, Jokippi presented results for the case of alpha

particles only, and did not include calculations for other heavy ions

of astrophysical interest.
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II. DERIVATION OF THE EQUATION OF MOTION
FOR THE HEAVY IONS

Two forms of the radial equation of motion describing the path

followed by heavy ions in the solar corona will be derived in this chap-

ter: the first will apply to the case of cool ions which have not yet

reached thermal equilibrium with the hot background. The second will

apply to the case of ions which have reached thermal equilibrium with

the background. Both forms will be sufficiently general to be used

with many theoretical models of the coronal background; the only re-

striction here lies in the assumption that the coronal electrons and pro-

irons may be described by Maxwellian distribution functions.

The derivation itself, although lengthy,

follows a basic pattern already given in many standard textbooks,

as "Plasma Kinetic Theory, " by Montgomery and Tidman {1964).

basic starting point is taken to be the Boltzmann kinetic equation for

_ the distribution function of the ions:heavy$

where _t

is straightforward and

such

The

_ -I-_.__ + "_ . -_

and _ represent the location and velocity of any ion of mass

M 5 in space, F_ is the applied background force (so far unspecified)

on the ion, andl_/_ represents the time rate of change of _3 due to

21



collisions of the ions with the electrons and protons. The reader will

be reminded at this point that we are only interested in the steady state

flow motion of the ions in this thesis: all partial time derivatives, such

as ____, will therefore be dropped from now on.

The next step consists in taking zeroth and first order velocity

moments of the kinetic equation given by (2), that is to multiply it by

rm0s and _osM3_ respectively, and to integrate the resulting equations

over the velocity space. The results may be written down in one-

dimensional scalar form directly, since it has already been agreed to

assume that the ions and ionized hydrogens were both flowing radially

from the sun.

The zeroth order moment equation yields the equation of conser-

vation of particles (conservation of mass), which, in a system exhibit-

ing spherical symmetry, may be written in the following form:

_s_ L = constant (3)

The first order moment equation yields the equation of conserva-

tion of momentum in the radial direction:

(4)
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where

is the pressure tensor, _3 and

_$ are respectively the flow velocity and the number density of the

heavy ions, and the subscript _ denotes the radial component of the

appropriate vector.

The equation of motion for the heavy ions, (4}, is still, however,

far from being in a useful form for investigating solutions to the prob-

lem; the next step therefore consists in evaluating explicit formulas

for the terms [ _j ]_ , [_. _ ]_t and [_(G._s)C f J_

A heavy ion, considered as a test particle in the spherically sym-

metric solar atmosphere will, in general, be subjected to a gravita-

tional, an electric, and a magnetic force:

c

where:I" is aunit vectorin the _adialdireotion, and _t',n.'_,gO..,',..),and

_(_-_ are the local values of the acceleration of gravity, the electric

field, and the magnetic field.
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I It should be explained at this point that the "electric field E(,-e) "

referred to above is really only one of the two components of the total

instantaneous electric field acting on the test particle; it represents the

effect of the overall gravity induced charge polarization of the ionized

I,

I
I

I

hydrogen background. The other component represents the collective

collisional effect of a much smaller group of particles enclosed within

a Debye sphere surrounding the test particle; the contribution of this

second component will be evaluated separately later when evaluating

the collision integral [fa_C_l.)C_oC ]_ z

(i) Evaluation of _{_._

Strictly speaking, the term _{_.'} represents the resultant gravi-

rational interaction between the test particle and all the other particles

in the universe. However, it is a well known result of elementary po-

tential theory that, in a system exhibiting spherical symmetry, the

I

I

gravitational force on a test particle located at a distance Jt from the

center of symmetry will only represent the effect of the particles con-

tained within an imaginary sphere of radius Yt centered at the origin

I

I

of the system, since the contribution of the particles located outside

that sphere will cancel out identically. In addition, it may be shown

I

I
24
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(see Appendix I) that the contribution of the particles in the solar at-

mosphere, in the region _>_o, on the local value of _Ot'_, is negli-

gible, compared to the contribution of the particles forming the central

to a very good approxi-solar core, in the region _t _<3to . Therefore,

mation,

is the universal gravitation constant andwhere G

the central solar core.

(ii) Evaluation of ECJt_

(5)

MO is the mass of

The purpose of this section is to show that in an expanding, fully

ionized hydrogen corona, there will exist a radial electric field

directed away from the sun, and given by the follow-

ing expression:

+I + T./r, j

where M_.

the flow velocity of the corona, and _',

the electrons and protons respectively.

is the mass of a proton, .4. the unit electrical charge,

(6)

and "T',. the temperatures of

The physical effect of this

electric field on the ions will be to reduce the effective gravitational

force acting on them.
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The derivation of the above formula will be given in two steps:

a simpler formula will first be obtained, giving the electric field, as-

sociated with a static ionized hydrogen atmosphere.

will then be generalized to the case of an expanding,

mosphere. A number of authors have already presented theoretical

treatments describing the state of a static, fully ionized, hydrogen

stellar atmosphere, including Pannekoek (1922}, Rosseland (1924},

Van de Hulst (1953}, Parker (1963), and Nakada (Unpublished Note}.

The discussion presented here follows closely the approach taken by

Rosseland.

This first formula

accelerating at-

We consider the state of fully ionized matter in a non-rotating

(spherically symmetric} star which is in isothermal hydrostatic equili-

brium, and, more specifically, the radial distribution of electrons and

protons in the star. Because of the force of self-gravitation, we may

expect to observe a larger concentration of protons than electrons near

the center of the star, and a larger concentration of electrons than pro-

tons far away from the center; this will lead to the setting up of a ra-

dial electric field EIA] which will counteract the effect of gravity and

maintain a stable equilibrium.

2t

We therefore assume that, outside of a spherical shell of radius

drawn around the center of the star there are N t electrons whose

26



protons are within so that the inner space bounded by that spherical

shell has a net positive charge _e-_ and the outer space has a net

negative charge -Ne_. (See Figure Ill.)

P I LL--BOX

CENTER

OF STAR

SPHERICAL

SHELl-

Figure III. Theoretical Model of a Fully Ionized, Spherically

Symmetric, Static Stellar Atmosphere

We now draw an imaginary pill-box of base area A between the

radii ._ and _.÷_ (see Figure III) and write the basic equilibrium

equations for the electrons and protons contained inside the pill-box

27



under the combined effect of the gravitational, pressure, and electri-

cal forces:

(7)

(8)

where:

_a = partial pressure of the electrons

eL = partial pressure of the protons

, = mass density of the electrons

_,_ = mass density of the protrons

=_-_ = magnitude of the charge density of the electrons

=_:.0. = magnitude of the charge density of the protrons

and the symbols _'-E(_ and _,_0_ have been defined already.

The primary purpose of this discussion is to derive an expres-

sion for E=E(_) only; how ever, since_, _. , C' ' CL ' _; and

are also unknown variables and are directly coupled to E" , we must

simultaneously obtain solutions for these quantities also. We therefore

need to set up a system of seven independent equations in these vari-

ables, including equations (7) and (8) given already.

The following relations may be written down immediately from

the definitions of OT, , 0-_. , _, , _. and from the assumption that the
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electron and proton gases obey the perfect gas law,

dilute gases of electrically neutral point molecules*:

as if they were

(9)

+,._ {_,_'r" (ii)

(12)

where_ is the universal gas constant. It has been assumed at this

time that _ = T_. =7" ; a more general formulation will later be given

to include the case "_a _Tz.

Finally, a direct application of the integral form of Gauss's law

to the spherical shell of radius_ around the center of the star gives

E,, N,-_- (13)

This assumption (commonly made in Astrophysics} was shown

to be reasonable by Rosseland (1924}.

29
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The solution of equations (7), (8).... (13) proceeds in the following

way: the expressions for _, , from (9), _ from (I0), ¢, from (ii), _.

from (12), and E from (13) are first substituted into (7), (8) to give:

where we have introduced

(7')

(8')

Equations (7') and (8') may now be integrated exactly, provided

we limit our attention to the lower regions of the stellar atmosphere

where, to a good approximation,__Ne __ constant so that_ is a constant.

This gives the following results for _1,_1., _. , _. ,_, and_:

(_-_._C_,-_-_

_T
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where _,(_,_. _(_a .... _(._ are the values of _a_,,_. .... _. at

the reference level a=no. For _:0, the above formulas reduce to

the conventional isothermal exponential decay laws for gases consis-

ring of electrically neutral molecules. Incidentally, the above results

may also be obtained directly from Boltzmann's principle; however,

they are then most commonly written down in the following form, as

a function of the electrostatic potential _ and the gravitational poten-

tial _ in the stellar atmosphere: m.

The required expression for the radial electric field _[_,)may

now be obtained, as was first shown by Rosseland, by noting the close

31



mathematical analogy which exists between the electrostatic and the

gravitational potentials: _ and _ may both be obtained from different

forms of the Poisson equation:

_'_'= - 4_ a- (14)

_'_= 4,,Gf (15)

where 0" (total electric charge density) and _ (total mass density) may

be obtained from _',, _, ¢. and _, for which expressions have been

derived already. Therefore, (ML__a_)

_ cM,_-_) _'r_'_e
_r

= H,,,,,+H_,_,.-_H,,,,(_,._• . N_m_(..'_ ¢ (17)

The mathematical form of equations (14), (15), (16) and (17)for

_-, ( , _ and _ suggests, as _ trial solution, a linear relation be-

tween _ and _:

whereK is so far an undetermined constant. Substitution of this trial

solution in the above equations leads to the following result:

-
The radial electric field may now be obtained by taking the gra-

dient of _ , after substituting the known expression for the gravitational

potential _ and making the assumption M..k_/_2 :
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The reader should be reminded that the above answer only applies

to the special case I". =l',. ='[" . A more general formula applicable

to the case _4=_'__may easily be derived however, using exactly the

same approach as the one outlined above; the resulting electric field

will be given by

This last result is, however, still limited to the case of a static,

non-expanding, atmosphere; in addition, it presupposes that "_ and

T_. are constant, since the integration of equations (7') and (8') was

directly affected by this. The first of these restrictions may be re-

moved, and the previous formula generalized to the case of an ionized

hydrogen atmosphere expanding at a given flow velocity co -- c o_._ by

_-_) , the convec-
adding, to the gravitational acceleration _(_= _0_,_ n _"

tire acceleration c6_(, experienced by the particles. This is a direct

application of Einstein's principle of equivalence. The second restric-

tion may only be removed if explicit formulas are given for 7_i=_ (7%_

and "['_.-T_.(_so that the integration of equations (7') and (8') may be

carried out in closed form.

Strictly speaking, therefore, no truly general formula applicable

to all theoretical models of the corona may be given. However, it will
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later be shown in Chapter III that, to a very good approximation, "_,

and TL do not change very much with Jt in the integration region con-

sidered in this thesis, _o $ _ _5_o, whether the model of Parker or

the model of Sturrock and Hartle is used. It will therefore be assumed

that the following formula for _'(_ is sufficiently accurate for our pur-

Near the bottom of the corona, it will later be shown that

pose:

(18)

so that the above formula reduces to the expression obtained previ-

ously for the radial electric field in a static atmosphere. Farther

away however, the convective term becomes dominant.

It will be seen in Chapter III that the two theoretical models of

the corona considered in this thesis assume that the coronal magnetic

field lines are radial and follow the motion of the background fluid.

Since the heavy ions are also assumed to flow in the radial direction,

the coronal magnetic field _(_) will exert no force on them in the

direction of motion:
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We may therefore summarize the previous results by rearranging

_F_] in the following way:
2_

+

In all cases of interest applicable to solar physics considered

in this thesis, O<_<i: the gravitational force acting on a heavy ion

will therefore be reduced by the ionized hydrogen background, but will

not be eliminated completely. The following typical values may be

given, applicable to the case of an alpha particle ( -_, -_-) placed

near the base of the corona, where co o_c......t*'_ _(_-')

__ 3/4, if _=T2. (Parker)

_ 1/2, if _'C_. (Sturrock and Hartle)

On the other hand, it is theoretically possible for _ to be nega-

tive: the ion would then "fall" upward faster than the background. A

typical example of this phenomenon, given by Oke (1961), would be a

hypothetical star whose center atmosphere is composed predominantly

of helium: a proton, diffusing out to a radial distance beyond which it
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makes no more collisions with the background, would be projected

into outer space with a velocity increasing outward to 0.58 times its

gravitational escape velocity from the level at which it was released.

This problem was also studied by Nakada (Unpublished Note), who

proposed a theory whereby the solar corona would consist predomi-

nantly of alpha particles and other heavy ions.

rk

r'__

It has just been shown that i.h.ljt, although a function of r,

and T',_ , was independent of the temperature T3 of the heavy ions;

_ ._ d _'ar I _ dit will now be seen that r.r=._ _] an IF (;_--_f/_] epend explicitly

on that temperature. These terms will be evaluated for two specific

thermal conditions on the ions:

I

I

I

T 3 --0 (Before thermal relaxation with the protons)

"[_ = T:. -- "I"(After thermal relaxation with the protons)

The case T_=0 should of course not be taken literally since no

atom could ever be ionized at absolute zero; it is simply a mathemati-

cal simplification for the fact that, near the lower limit of integration

(._. _n.), T.-_L<_]. typical values would, for instance, be T3A, 6 x 103OK,

T'_. _ 106 OK. Under this assumption, then
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since the ions have no random thermal velocity. Therefore,

. 0

Physically, this means that a gas of particles at absolute zero

will not exert any pressure. There will therefore be no force due to

pressure gradient in the radial direction in this case:

I
(20)

The second case (TI =T_. ) will be treated by assuming that _3

may be represented by a Maxwellian:

I
31z

I Therefore,

I

I

I
_+= M.+_.,%++ms,.JfC_--._,X+.-x,he
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I
The integration of this expression is straightforward.

I out that

I 5- ----
(3) Evaluation of [[_(_J_ _'1

LJ _,¢'t:/Co]l J.¢

It turns

(21)

I It will be assumed that [___ may be expressed by means of
k _t/c,1]

the Fokker-Planck equation:

I where the coefficients [I$ ,.,_l I and _, have been given in standard text-

books, such as those of Montgomery and Tidman (1964), or Holt and

Haskell (1965). They are
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where

The above formulas automatically take into account the shielding

of the electric field of each ion by the rearrangement of the electrons

and protons around it. This purely local charge polarization (within

a Debye sphere of radius equal to _= *) will be in addition to

the already mentioned gravity induced charge polarization, which will

have a continuous effect on the entire solar atmosphere. However,

because of the very high electrical conductivity of the corona, the net

local deviation from charge neutrality due to these effects will be very

small, and we can still assume than _1__n_ in computing _ and

A

The next step in the evaluation of [f_'[__] consists in

LJ kGt/CollJ_

substituting the distribution functions _l and _. (which are assumed

to be Maxwellian, respectively peaked at the flow velocities _4_ and _=.)

explicitly into the previous expression for l___ and in performing
k ,_c/c.ll

the required integrations. The detailed calculations, which are lengthy

I
* Near the outer corona, T,A" 1 x 106 °K,m _, 106 particles/cm 3,

I and _ _, 6.9 cm. Closer to the sun, A.jis even smaller.
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but straightforward, are given in Appendix II. The result turns

I

I

I

out to be

I ._, (++._+-
I where we have introduced:

÷ 2.(I+zZ,.w,.__(w,_)]_l
mj

I

I

I

I

I

I

I

w,,= I,¢-,,_I

_.- M,/:_T,

_(_)_ _.22_°_a'6 (Error Integral}

The last expression for (___j_ is still quite general, since an

explicit form for_ has not been specified yet. It turns out that the

collision integral f_(_'_3_] will have the same value for both

•.a -----_ \_.l:/_l] j _.

forms of _a selected in this thesis.

The collision integral will take the form:

4O



where

1

Summarizing the previous results, we may therefore write the

following two forms for the momentum equation (in the radial direc-

tion) of the heavy ions:

A. Before Thermal Equilibrium is Reached with the Solar

Corona ('I"3= (9):

i , ][,+,

B. After Thermal Equilibrium is Reached with the Solar

Corona (q'_.'r,.)':-':

+'-r,.l"r, _k '-_G_'A'_;')J

M,Ms

It has already been explained in Chapter I (Approach to the

Problem) that the ions will then acquire the temperature of the

protons (T:.) rather than the temperature of the electrons ( "_ ).
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I
The basic approach used in solving the above momentum equa-

l tions for .clj=._(_ will be to transform them into velocity equations

I by eliminating the number densities _s and _,_/I_,. with the help

of the appropriate conservation of mass equations. The quantities

will then have to be specified explicitly (either in closed form or not)

!
to leave 743= _3(_'_ as the only dependent variable; this step will

I be presented in Chapter Ill. However, the above equations will still

be, in their present form, exceedingly difficult to solve, even numer-

ically, because of the presence of the error integrals _ 's in the col-

lision terms; the next step will therefore be to transform these exact

integro-differential equations into approximate (but tractable) non-

linear first order differential equations by expanding the error inte-

grals on the assumption that

This assumption will now be shown to be reasonable by substi-

tuting typical numerical values for _ , _ , _e , _ ,and _j .
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In the physical region of the solar atmosphere under study,

I _< "rt _45 , T_A,'I'_ _,. 1 x 106°K, _,_¢,_ 1 x 107cm/sec. *
Y/o

Therefore,

"Vi_, /Z_T I __ 1. 82 x 10-9sec/cm

It is much more difficult to assign a typical value to 143 , since

this velocity is the unknown quantity to be determined; in fact, ,u._

may be positive, negative, or zero: the heavy ions may either move

upward, downward, or remain at rest relative to the sun. It is how-

ever possible to compute lower and upper bounds to the absolute

value iJ43 - c_i :

(i) Lower Bound: in the "collision-dominated" limit,

the force of gravity and the electrical force on each heavy ion will be

negligible compared to the kinetic friction force between it and the

upward moving ionized hydrogen background, and a 3- ¢., so that

I_3 " co IMi. = 0

These figures apply to the coronal model of Parker; if figures

applicable to the model of Sturrock and Hartle are used instead,

the approximation becomes even better.
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(ii) Upper Bound: in the "gravity-dominated r' limit,

the kinetic friction force and the electrical force on each heavy ion

will be negligible compared to the gravitational force on it, and the

ion will move downward in free fall (assuming that it can reach a cer-

tain height above the base of the corona by means of some other mech-

anism in the first place, such as a solar flare).

The familiar principle of conservation of energy may be used

to compute the absolute value of the maximum velocity reached by the

particle in this way, as it falls from the level _L-_l (at rest) to the

lower level JLt_ o ; this gives

i,

Consequently, _43 will reach its maximum absolute value

if Jt_.: 5-'re , the upper integration limit; substituting the appropriate

numbers for _o and _(&.) , we find that

_I ,-, 1 x 10 7 cm/sec t_ coM_l_s_" M_-

and therefore

2 x 10 7 cm/sec

It follows from these results that Ic.__jIpl _r"_.<_I,although

I¢.o-_lli_i_i__ _ i. However, it must be realized that the above
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I
estimates were based on extreme physical conditions which are very

I unlikely to exist in reality*.

I It will therefore be assumed from now on that

t.,,,,-+'..t_ <'+++

I and this will be checked later in Chapter IV. It is also logical to

I assume that _ <_i, _<'_,- since the ions, even if moving upward,

should experience some settling due to gravity. This will also be

I checked later.

I We are now able to expand the error integrals (and their deriva-

I tires) by means of convergent alternating series of the form

= + .... + (-+_]+

o0 2X+I

- +mX+l_ x !

where _ = lJ4_l -+.J_,tl_ or +'_S -..,',t_.I I_

I

I
I

I

I

For instance, it will later be seen in Chapter IV that the maxi-

mum value actually reached by _4-i-¢o_ in our calculations (with

HeII as the ion) never exceeded 0.5 c o ; this would then satisfy

both assumptions unconditionally.

I

I

I
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I
The collision term in the right-hand side of the two forms of

n the equation of motion will then become, after simplification:

_-(_,' M, /x., = _,! "\_+,j

n
If this is applied to the model of Parker, or to the model of

I
I
I

I
I

I
I

I
I

I
I

Sturrock and Hartle, _=-_a -- ¢o ; the above form of the friction

term may then be further simplified to give the following result:

w g'3LJ _*/cm J_.

since,

,_._--_'_r-,_(_-,___;=__,. --'- ..., _..
Hs" L• _"/ffT_?'-, cx-,_:_+,_\ _,) .....

in our calculations;

>> M I __ : X,, I,

and the explicit expression for Pl was substituted.

We may therefore use the same general formula to compute the

effect of friction, regardless of which theoretical model is used to

describe the background; the only difference will be that the quantities

T a and _-(by definition, _=_./2_T,)will be constant in one case, vari-

able in the other.
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The two forms of the equation of motion may now be written

down formally by combining together ( 4 ), ( 19 ), ( 20 ), ( 21 ) and

( 22 ). However, it will later be found useful, in computations leading

to so]utions of the problem, to work with dimensionless equations.

These will be obtained by introducing the following new dimensionless

variables _ , _ , V , and v- '.

°.- U
.,.,,=v IS.f,/t.

where M., _. , and _. are respectively the values of the total number

density, pressure, and mass density of the corona at the reference

radius_t, j1.. in both theoretical models of the corona considered in

this thesis, the electrons and protons, which make up the bulk of the

corona, are assumed to be at the same temperature T,-T_,_T. at the

and to obey the perfect gas low. We may thereforeradius ._. -71 o

substitute

in the previous expressions. This will give the following simplified

forms for the dimensionless equations describing the motion of the

ions in the corona:
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I
Before Thermal Equilibrium is Reached with the Solar

I A. Corona ( "I-3--0 ):

VAV__ _, . F. tL_I 7f-

B. After Thermal Equilibrium is Reached with the Solar

Corona (T s = 7"_ ):

(23)

I L'-
(24)

where

I

I

I
I

k4"JgTo / x. k M,]_ l+ r,./_ ]]

!

_-" ki_T,/k

(_'roTIr-Z-'_,_/kM3/k M,.]

.3& ,F+= s C_T_._ . (-r,"h'',-
z\q -c) _ _'u]

I_5 = P'42

+M,%
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It should be noted that, for a given type of ions, and for given

boundary conditions at _t--_o, F'_ and Fs will be known constants;

furthermore, if the model of Parker is selected to represent the

background, Ti.l"_-1"o-. constant, so that 91 , F'_ , and F'_ will also be

known constants. If the model of Sturrock and Hartle is selected in-

stead, _ and T, become specified functions of yt (or _ ), so that

, F-_ , and F÷will be given variables.
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III. THEORETICAL MODELS OF THE SOLAR CORONA

Before attempting to solve the diffusion equations (23) and (24)

for the flow velocity _' of the ions in the corona, we must specify, as

a function of position, the basic flow properties (dimensionless) of the

ionized hydrogen background which appear in these equations: the

flow velocity L/ , the total number density _- , and the temperatures

I", and T,_ of the electrons and protons. As it was previously ex-

plained in the second part of Chapter I (Approach to the Problem),

these quantities are assumed to be identical to those obtained by other

authors for a simplified corona consisting of fully ionized hydrogen

only. A brief historical review of the work accomplished in the dy-

namical study of a corona consisting of ionized hydrogen only will

now be given, followed by a more detailed description of the two

coronal models specifically selected to solve the diffusion equations

(23) and (24).

A model of a thermally conducting, static, corona was first

obtained by Chapman (1957), who derived the temperature distribution

of such an atmosphere. The concept of a static solar atmosphere was

criticized by Parker (1958, 1963), who suggested instead a model in

which energy is transferred outward from the base of the corona by

hydrodynamic streaming. In this model (described in detail below),
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the fluid is accelerated outward by pressure gradients so that it

arrives at the earth with a radial streaming velocity around 400 to

800 km/sec. The solar wind observed near the earth may therefore

be regarded as a manifestation of the expanding corona. Another

theory, proposed by Chamberlain {1961), retained the concept of a

thermally conducting convective solar atmosphere, but suggested

that the corona is heated only in a thin shell at its base. Noble and

Scarf (1963} pursued this idea, taking boundary conditions appropriate

to the solar wind: these results have tended to confirm the predic-

tions of Parker's model. A viscous model of the solar wind, obtained

by solving the Navier - Stokes equations of ordinary fluid mechanics,

was also brought forward by Whang, Liu, and Chang (1966).

Even though fully ionized hydrogen consists of two fluids (elec-

trons and protons), all the theoretical models of the corona mentioned

above assume that the electrons and protons have the same tempera-

ture, the same flow velocity, an_ the same local number density: they

may therefore be described as being "one-fluid" models. It will later

be shown that typical values of _-_, the collision frequency for energy

exchange between electrons and protons, are such that one should ex-

pect the electron and proton temperatures to be quite different in the

solar wind. Such a "two-fluid" model was investigated by Sturrock

and Hartle (1966) and will be described below.
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A. Model of Parker

This model of the corona and solar wind rests on the fact that

the mean free path of the average thermal proton* is short compared

to the relevant dynamical lengths, such as the scale height, solar

radius, etc. According to Parker then, the corona may be regarded

as a hydrodynamic atmosphere rather than a gas of discrete charged

particles. It follows from this reasoning that the classical one-fluid

By definition, the m. f. p. is given by the formula

m.f.p. = _:_

where: fir =

"_:_ =

thermal velocity of proton

time in which a proton undergoes an
accumulative deflection of the order of

90 ° due to Coulomb scattering in an at-

mosphere of ionized hydrogen ofm ions/cm 3

3 x io- 12 _' / _ __f._ _o*r '¢/_"q

For typical values of _ and T', this gives

m.f.p. __ 3 x 102 km at _=_o

m.f.p. _ 3 x 104 kmat ,,..__ 1.3n.

m.f.p. = 3 x 105 km at n.-_ I.'/Y_t,
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hydrodynamic equations may be used to study the overall expansion

of the corona, using a hydrostatic pressure which is maintained iso-

tropic by Coulomb scattering.

radial direction, and neglecting solar rotation,

describing the behavior of the system will be

Making the usual assumption of steady-state motion along the

the equation of motion

I ÷_.,
where c o is the flow velocity, _ the gas density,

(25)

is the gravitational potential. The force exerted on the gas by the

magnetic field _ has no component along the radial direction, since

is radial; in addition, no electrical force appears in the above

equation, since the postulate that we have a "one-fluid" gas automat-

ically excludes any charge separation effect. Finally, viscous forces

have been neglected in (25) because they appear to be rather smaller

than the effects of thermal conduction along the streamline; the effects

I

I
I

of coronal heating and thermal conduction are represented by supposing

that)_ and _ are related by a polytrope law:
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where _ is the polytrope index; in general, | _ _ 513 : _= ( describes

an isothermal gas, _ 5/3 describes an adiabatic gas. As a final equa-

tion, we may write the equation of conservation of mass:

(27)

I

I
I

I
I

It is now possible to solve the system of equations ( 25 ), ( 26 ),

and ( 27 ) for the required flow quantities co, _ , and _. The tempera-

ture "I- may then be obtained from the perfect gas law. However, it is

again (as in Chapter If) more convenient to introduce beforehand a di-

mentionless gravitational potential by defining H _ _M_ _, //_, ._.% ,

as well as the other dimensionless quantities already defined in Chap-

ter If. The solution for _ , the dimensionless form of c o , cannot be

I

I

I
I

expressed in closed form exactly, but may be obtained by solving

transcendental equations:

For _,,I ,

For 0(+ J,

_'-' [/.if'/ Y

(28)

(29)

I where [it--- U_ + _ /(o(-_ -

u: . ut- *_ Uo-H
I Mathematically, the solution of equations (28) and (29) is

closely analogous to the expansion of a gas through a Laval nozzle

54



I

I

I
I

I
I

I

I
I

l
I
I

I
I

I
I

I
l

I

and is complicated by the many branches of the solutions of the

IBernouilli equation. For simplicity, we will only use, in calculations

presented in this thesis, the isothermal results ( or _, I ): there is in

fact no single effective value of _ which is valid throughout the entire

corona. However, the best fit suggested by Parker consists of taking

o_ = 1 from _"_o to some transition radius _-7_,. , beyond which

__ 5/3 . Since the integration range considered in this thesis is

ft. ___ 5_o , the choice _,=I seems logical.

We now return to the topology of the Bernouilli equation. A

typical set of results for d,, ! is reproduced from the book of Parker

in Figure IV.

0
0

I I i i

1.00,

O0

(::_= !

1 2 3 4 5 6 7

,, =_o/c.Mo _o

Figure IV. The Family of Solutions of the Bernouilli Equation

(28), [i versus 11" (or _ ), for an Isothermal Corona

and Various Values of the Constant L Designated on

each Curve. The Critical Point, marked by the

Large Dot, has the Coordinates U_-- I[_ _'TF¢= 119_
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It will be noticed that there are two branches of the velocity curve

near the sun and two far from the sun. The lower curve is the ap-

propriate one near the sun, since the expansion velocity must go to

zero there; the upper curve is the appropriate one far from the sun,

giving supersonic velocity and vanishing gas pressure. A physically

meaningful solution will cross over from the lower to the upper branch

at some point called a critical point; this is similar to the cross-over

from subsonic to supersonic flow in a Laval nozzle. It may be shown

Thethat, for _,,I, the critical point is lie- |/lY_ and _c,, 14/9-

value of d: for the solution through the critical point is

7_

A number of solutions ¢,-Co_ corresponding to different con-

stant temperatures T o was also given in Parker's work and is repro-

duced in Figure V of this thesis. It will be noticed that c o increases

very rapidly with _ close to the sun, and more slowly thereafter.

Finally, it should be mentioned that for small values of ._ , an

approximate asymptotic solution may be written in closed form for _ :

-C}
5/ t_..e (3o)

F
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Expansion Velocity Co (km/sec) of an Isothermal
Corona as a Function of the Radial Distance )'t.

(in units of 106 kin) from the center of the Sun.
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B. Model of Sturrock and Hartle

The primary reason for introducing this "two-fluid" model rests

in the fact that the collision frequency _'Efor energy exchange between

the electrons and protons does not seem to be sufficiently high(except

very close to the sun) to maintain thermal equilibrium between these

species, so that it may be expected that the temperatures of the elec-

trons and protons could become different in the outer corona and solar

wind. The basic formula for Y'_ was given by Spitzer (1962):

_ ,=_ 8.5 x IO'_'ntT -3/`"

This will be compared to the expansion rate _"e-.-¢._=____* of the solar

atmosphere, using "one-fluid" values for co and m obtained with the

model of Parker described previously in Section A of this chapter,'.'*.

Far from the sun, where co does not vary too rapidly with ._.,

the above formula for _'e becomes, approximately, y¢ _- _.¢, [_.

In their original paper, Sturrock and Hartle (1966) compared

_'e and v'_ at only one value of _. ( ._- _- 150 -_o ), where Y'_ <4 we ;
they used, in their calculations, the "one-fluid" model of Scarf

and Noble (1965) instead of the isothermal model of Parker (1963)

used in this thesis.
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In order to be consistent with the rest of the treatment, only the iso-

thermal Parker model (_--I) will be considered. It will later be

shown in Chapter IV that no single value of "I"is then entirely satis-

factory; however, most authors consider the temperature of an iso-

thermal corona to lie between l x 10 6 OK and 2 x 10 6 OK. Numerical

values for Y'g and _'e have been computed for these two temperatures

and for three different distances from the sun: zt=_o,3t--SJto, and

_x-_lS0_o (radius of earth's orbit around the sun); they are given in

Table 1.

I

I

I

I

I

I

I

I

I

I

T" lx 106OK 2x 106OK

_ =.n./._o 1 5 150 1 5 150

_'_(s_¢") 2"6x10-3 2"1x10-6 7.4x10-10 9.0x10-4 6"8x10-6 3.5x10-c

y-e(se¢ o,) 3.4x10 -5 8.9x10 -5 6.5x10-6 2.7x10 -4 1.7x10 -4 9.9x10 -6

Table I. Typical values of the collision frequency _-g- and the
expansion rate Ye in the corona and solar wind.

The following conclusions may be obtained from the results

given in Table l:

(1) Near the bottom of the corona (Jz/_ o _ I ), V'_ _ we : thermal

equilibrium may then be assumed to exist between the electrons and

protons, and 3-1 _-TL.
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(2) Far away in the solar wind (_t/_, ~ ISO ),_'_ _'¢ : thermal

equilibrium may no longer be assumed to be maintained between the

electrons and protons, and 7",,_'F_ .

l

l

l

l

l

l

(3) For intermediate distances, such as the upper limit of

integration considered in this thesis (a-/_ o = 5 ), no definite answer

may be given.

The assumption T.-Tz=T" made previously by Parker is there-

fore relaxed. However, the electrons and protons are still assumed to

have the same number density _ , the same flow velocity co, and to

behave as perfect gases. The equation of continuity will have the usual

form

= J (31)

where J is a constant. The dynamical equation will be, if we neglect

solar rotation, viscous stresses, non-radial magnetic fields, and

M, .<<.N,. :

I The energy equation given by Braginskii (1965) is then combined with

equation (31) and (32) given above to obtain "heat equations" for protons

and electrons :

(34)
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where _l and_z are respectively the thermal conductivities of the

electrons and protons. They may be expressed by means of the fol-

lowing formulas,

In addition,

first given by Chapman (1954):

_, __ 6 x 10 .7 _s/s (35)

_. __ 1.4 x 10 .8 T',. 5l_ (36)

we _ 8.5 x 10 -2 _-3/_.~ (37)

The above system of equations was solved numerically by

Sturrock and Hartle with the boundary conditions that at _ =_® ,

z_--mo , T, _T2*'I-o ; they also required that there must be a subsonic-

supersonic transition at some point _.>T_®. Radius dependent poly-

trope indices ¢_1(_ and _.( _._ were introduced to avoid solving all

the differential equations simultaneously,

It turns out that _,

formulas:

_,,_--o(, (_ _-- X,

where _,,

such that

and c_ may be represented by the following

- (,ri-_,h._

(_,-K)e

_ (_-_/_,

-C,,--'R_'_/_.

and H_ are constants.
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Only one set of numerical results was obtained by Sturrock and

Hartle, corresponding to To =2 x 10 6 o Kand too=3 x 10 7/ cm 3

They are reproduced as Figure VI and Figure VII in this thesis and

give co = Co(_), m=_(_ , T,=T,(_) , and "_=T2(_ TM) . The results for

co and m seem to have the same general qualitative behavior

than the results of Parker: in the range |x< _ _ 5 the velocity'

c o is consistently slightly lower than the corresponding velocity

6 OK. Itobtained by Parker at the same point for To = 2 x 10

should be recognized that the two sets of results are not based on

exactly the same boundary conditions, since Sturrock and Hartle

used "_o as their reference radius, and not no as Parker0,o_-1.+3Re_

C o _¢ W_/SeC

Figure Vl.

IO8

108

107 106 _f'l_ cm "'t

105

1o6 1 I°4
I %%% EARTH I S

%%JRB I T" 102

-I
I I I I I I l I I I I 10

1051 2 4 6810 2,0 4060100 200 400

The flow velocity c° (era sec -i, solid line) and

electron density m(cm -3 , broken line) as a

function of the radial distance (in units of _®-- 7xl0 _°
cm) from the center of the sun.
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Figure VII. the electron temperature T,( ° K, broken line) and

proton temperatureT2.(OK , solid line) as a function

of radial distance (in units of 1_O -" 7 x 10 10 cm)
from the center of the sun.
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IV. SOLUTION OF THE EQUATION OF MOTION
FOR THE HEAVY IONS

A. General Discussion

The diffusion equations ( 23 ) and ( 24 ) are non-linear first

order differential equations from which we desire to obtain solutions

V= V(_) over the range I_< _<S . In principle, each one of these

equations will have a single valued solution (for specified values of

the quantities F, , Fz , F5 ), provided a boundary value for

V (or dV/_{_ ) is given at some point, such as _ =1. It should

however again be emphasized that the basic flow properties of the

ionized hydrogen background which appear in these equations (such

as // , _" , _ , and T,. ) are themselves not generally specified in

closed form, but must be obtained numerically from point to point by

solving transcendental equations. In general therefore, analytical

solutions for V = V(_ cannot be readily derived in closed form over

the entire range of integration, and the diffusion equations will have

to be integrated numerically on a computer. Before actually dis-

cussing these numerical solutions in other sections of this chapter,

it is however possible and useful to answer the following question: if

a typical heavy ion is injected near the base of the corona, will it

either move upward, remain stationary in equilibrium, or fall back

deeper toward the solar interior? More specifically, we will derive
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an approximate mathematical relation between the basic physical

quantities involved ( b_. , bq_ ,(._/2_, T o , _(,_o_, etc... )

giving the condition required for such an ion to start diffusing upward

in the corona.

It has already been mentioned in Chapter III that, for small

values of _ , the transcendental equation ( 28 ) derived by Parker

for U , in the case of an isothermal corona, has the following

approximate asymptotic solution * in closed form:

L

where _ and [_z

This expression for [].

are constants which have been defined already.

(along with the corresponding asymptotic

expression for _" , which follows directly from the equation of

conservation of mass) will now be substituted into the first diffusion

equation (23) to leave V=V(_)as the only dependent variable; since

the above asymptotic expression for U is only accurate near _ _ I ,

.u .,_
-J- _l-

A corresponding asymptotic solution was not reported to exist by

Sturrock and Hartle for their model; this discussion will there-
fore be limited to the model of Parker.

For "F, --T_.---'I-o -- 1 x 10 6 o K, this approximate asymptotic

solution is in error (compared to the exact solution obtained by

solving the transcendental equation numerically} by less that
0.1%at n-_o, 6.0%at _,,2_Zo , and 22.8%at _z--5_o .
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it will be assumed that the ions have not yet reached thermal equil-

librium with the background, and the second diffusion equation (24)

will not be used. In any case, it will later be seen that both

diffusion equations give very nearly the same solution for V(_) at _,_ 1.

The resulting asymptotic diffusion equation will be further sim-

plified by making the following additional assumptions, which are

valid near the base of the corona( _ _ 1):

(1) The effect of the convective acceleration of the hydrogen

background on the radial electric field is small compared to the

effect of the other terms, since U and el[_ are both small near _= 1:

(2) If the ion is just barely able to diffuse upward in the

corona, the kinetic friction force will have to be as great as possible

to overcome the downward force of gravity; for given background

conditions, this will occur if V_ LL .

(3) For the temperatures of interest in solar physics,

Ltz, I
This will allow us to linearize the collisional term in the

diffusion equation. We then obtain:

-F,,
At this point, the reader will be reminded that, with the model

of Parker, F, , _ , and F4 are constants given by the following
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formulas:

F, =. A ,, _ _,4",_To)L z \ ._. / M, J

MA÷

" ¢_,Tol"#Tt, t._/I,--FT',)__..t M,.)
F,_ • (_,T.._ !
-_-_.<.--/_,

The necessary criterion for the ion to diffuse upward is that

O, Therefore,

2 f

3

This may be made physically more meaningful by substituting

I the above formulas for _ , F3 , F+ , and _ The resulting

I

I
I
I

I
I

inequality is rather complicated and still not too illuminating at this

stage, so that we will now restrict ourselves to an ion which is

heavy enough (and not too strongly ionized) so that M,./bt 3 _ I

_ (_,/_) _,/m _ I.

The criterion for upward diffusion of the ion will now become,

approximately,

where the left hand side of the inequality depends on the physical

characteristics of the ion only (M$,_4,/._')), while the right hand

side depends on the physical characteristics of the background only

( m0, "Fo , L{.-- L[(T.'} ). This allows us to state the following results:

(1) For given background conditions, a heavy ion may move

away from the sun if a sufficient number of its atomic electrons have
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been ionized.

(2) A given ion may move away from the sun ifthe temperature

To or the number density _o of the corona at_-_ o are high enough.

The following numerical example will serve to clarify the

meaning of the above statements:

Let us consider an ionized atom of iron injected into the base

of the corona maintained at a temperature To =i x i0 6 o K, and let

us find the minimum level of ionization required for upward convection

of the ion. After substituting the appropriate values of rno,_,(n._,M_

(neglecting the mass of the electrons and the atomic binding energy),

we find

___ > 74.5

or, approximately,(___)> 8.63; however, (____2) must bean

integer, so that we must take (___ _ 9. This result agrees exactly

with spectroscopic observations of the coronal lines: the least

ionized iron atom observed in the corona was found to be FeX, with

9 electrons stripped off. The following Fe ions have also been

observed in the corona: Fe XI, Fe XII, Fe XIII, Fe XIV, and FeXV.

It should be remembered that these results only apply near

the base of the corona; the next step in the solution is to actually

obtain the velocity of the ions in space for _>_°, and this will be

discussed in sections C and D of this chapter.
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B. Selection of Heavy Ions of Astrophysical
Interest

Summarizing what has been accomplished so far, we have first

derived general diffusion equations from which the dynamical beha-

vior of heavy charged particles found in the solar corona may be

predicted. We have also derived an approximate relation from which

we may compute the minimum charge such particles must carry to be

convected against gravity. We now want to actually solve the

diffusion equations to obtain V,,V(_,) for a number of charged

particles of special interest to solar physics. It has already been

mentioned in Chapter I (Definition of the Problem) that spectroscopic

observations have shown that the solar atmosphere is extremely

rich in such charged particles; the purpose of this section is there-

fore to choose a representative sample of charged particles to be

used in numerical calculations.

Although some chemical compounds(mostly diatomic colecules

like CN , C, , CH ,NH , etc.)have been discovered to exist in

the lower regions of the solar atmosphere, the majority of these

molecules cannot exist in the solar corona becausethey would

immediately be decomposed by violent collisions resulting from the

high temperatures of the gas (Flammarion, 1964). We will therefore

ignore the presence of stable charged molecular fragments, and limit
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our attention to ionized atoms.

We must therefore answer the following two questions: first,

which elements should be selected and, second, whichions of these

elements should be considered.

It is generally considered (Kuiper, 1958) that the sun consists ,

by mass, of 82% Hydrogen, 17% Helium, and 1% for all other ele -

ments combined together.. We will therefore select Helium as the

first element of our sample, because of its overwhelming abundance.

The next logical choice would seem to be Carbon * since it is, after

Helium, the most abundant element in the sun. However, it is still

a comparatively "light" element, and it will therefore be more

interesting to focus our attention on elements with atomic numbers

larger than 15 or so. If the estimated solar abundances of these

"heavy" elements are compared (Kuiper, 1964), it will quickly become

obvious that Iron is the most important species. (For instance, the

abundance of Iron is approximately 6.3 times larger than that of its

nearest competitor, Sulphur, and approximately 372 times larger

than that of the next heavier element, Cobalt). We therefore select

The intervening light elements {lithium, beryllium, and boron)

are known to be abnormally rare in the solar atmosphere,

probably because of the ease with which they may be destroyed

in the solar interior by nuclear reactions; they are therefore
of no special interest %o this study.

7O



I
I
I
I

I

I

I
I

I
I
I

I

I
I

I
I

I
I
I

Iron as the second element in our sample.

The selection of the ions of Helium and Iron is obtained in two

steps: first, atomic physics handbooks (such as those prepared by

Moore, 1952) are consulted to see how many ionization stages are

possible for these two elements: this gives He II and zHe + for

Helium, and Fe II, Fe III.... Fe XVIII for Iron. Second, we

eliminate from this grOUD ions which either do not satisfy the

"diffusion condition"derivedin Section A of this Chaoter, or which

have not been observed spectroscooically in the corona. This

]eaves the followin_ ions:

=ixl0 6 o K*" z He4

Fe X, Fe XI, Fe XII, Fe XIII, FeXIV, FeXV

To = 2 x i0 6 o K: Hell, zHe 4

Fe X, Fe XI, Fe Xll, Fe XIII, Fe XIVjFe XV

Finally. in the case of Iron. calculations will only be presented

for Fe X and Ve XV (the two extreme cases) since the other in-

tervening ions may be expected to give results falling in between

those of Fe X and Fe XV.

":'+ This selection of % will be explained in the next section.
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C. Model of Parker

The next step in solving the diffusion equations, for each ion

mentioned in the previous section, is to evaluate numerically the

coefficients P-,, Fz , .... F_ • With the isothermal model of Parker

discussed in this section ( T,-T2_T o = constant), F, • F_ , .....

are all constants and may be computed from the following para-

meters: _o ,_(_._ • To , M_ ,_, M 3 , m, • and.c_ ; of these, -_.

)I, , _(A_, Mu, and _o are basic physical constants common to all

cases, and(___3), r43 depend on the particular ion under study; however•

"f'o remains undetermined. It has already been mentioned in

Chapter Ill that, since the isothermal model is only an approximation

to the real temperature distribution• no single value of To is

entirely satisfactory for all cases; estimates of 7"0 based on

experimental observations of the corona apparently depend on what

physical quantitities are actually being measured. A good review of

this perplexing problem was given by Allen (1963). For instance,

early temperature measurements based on line widths were about

2.0 x i0 6 o K (Allen, 1954); more recent estimates based on the

same method seem to be about 2.4 x I0 6 o K (Billings• 1959) or

more (Jarrett and yon Kl[iber, 1961). On the other hand, tempera-

tures derived from the degree of ionization, and therefore dependent

on calculated ionization and recombination coefficients, have
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consistently turned out to be lower, of the order of 0.8 x 10 6 o K.

It will later be seen in this section that such differences in T_ have

a marked influence on the results.

Other experimental determinations of "Zo have persistently

given two sets of values,

summarized as follows:

Line Widths (Uns61d,1960)

a "low" and a "high". The results may be

Scale Height (Uns8ld, 1960;

Pottasch, 1960)

Kinetic Temperature. To =

2.4x106OK

Kinetic Temperature. T o =

1. 6x106°K

Ionization (Allen, 1954) Electron Temperature.

0.8x106°K

Radio Brightness in m Band Electron Temperature.
(Newkirk, 1959) 0.8 x 10 6 o K

It will be noticed that the heavy particles tend to give high

temperatures and the electrons low temperatures, hence some

consideration was given (LiEge Colloquium, 1961) to the suggestion

that this difference was real. It was proposed that the mechanical

energy that produced coronal heating was applied to the heavy

particles, while the energy loss was mostly associated with the elec-

trons. Unfortunately, this is in contradiction with the results of

Sturrock and Hartle (See Chapter III), who have shown that, on theo-

retical grounds, the temperature of the electrons should be higher,

not lower, than the temperature of the protons.
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Instead of attempting to resolve this difficulty at this time,

we will simply present two sets of results corresponding respect-

ively toTo=I x i0 6 o K and "Co= 2 x i0 6 o K.

The constants F., F'_, ... _'5may now be evaluated and are

given in Table II for the case'[, =T,_ = T_ = To; in the case -[3-0 ,T,--_7-o,

the constants _ , F_ , . . . F'@ have the same value as for the

case T,=_, while [_-0.

Computer programs were then prepared, in order to integrate

the diffusion equations (23) and (24) numerically on a CDC 160-A

computer, so as to obtain V-V(_ as well as L[ and v- from _:--I

to _ = 5. As it was explained already in Chapter III, the transcen-

dental equation (28), which must be solved for [i from point to point

by an iteration subroutine, has a singular point at _=_-_. -. The

integration was therefore carried out in two steps, from _- I to

_-_14 - z , and from_=M__-_Eto _-- 5, where _ is a small number.
Z

A typical program listing is reproduced in Figure VIII for the case

of zHe 4 ions at _-0 and To-lx 10 6 o K. The other cases (for

At the singular point, where the upper and lower branches of

equation (28) come together, there are, mathematically, two
possible solutions for _lU , one negative, one positive, for one

value of U.-t_,; however, only the positive solution for dU is
physically acceptable.
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Od

Figure VIII. Computer Program Listing

for the case of _H¢ _ ion_
at -_ = 0 and % = l x I0 °K,

One- Fluid Model of Parker
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T_= 0) may be obtained by substituting the appropriate numerical

values for the various input quantities: H and U_ (functions of To

only), F, .... F_ (functions of ._j ,t_l, as well as _), and Vo ,

the boundary value of V at _- ] .In the case _@0, an additional term

(TERM_ in computer language) was added to take into account the

effect of pressure gradient due to the finite temperature of the ions.

The boundary value Vo referred to above was obtained by

means of a relaxation method which will now be described.

/

Although we speak, in each physical case of interest, of one
i

boundary value for V , we know that this is only a oversimplification

of what really takes place at the base of the corona: because of the

turbulent conditions and convection currents which are thought to

exist in the chromosphere, the ions will be injected into the corona

with a certain distribution or spread in velocity, rather than with a

well-defined radial velocity component: as they start interacting

with the coronal electrons and protons, those with "low" velocities

will be accelerated upward faster than those with "high" velocities;

however, since the two dynamical models of the corona used in this

thesis assume that the electrons and protons have the same single-

valued flow velocity at any point, the ions will, after a certain

characteristic relaxation distance _... , acquire the same common
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flow velocity V .A large number of numerical calculations have

shown that 9._ _: I in all cases of interest. The computer may
21o

therefore be used as a tool to simulate, mathematically, the physical

relaxation process which takes place as the ions attain a common

I flow velocity. The proper boundary value to be used for V at _ =

I may then be obtained by solving the diffusion equations numerically

from __ I-).jt to J =I, using a number of reasonable initial

values for V at _ = I- _tjt , and letting the resulting solutions

relax to a common value.

I
I

I

Graphs of V--V(_')andU= [/(_')areshown in Figure IX ('I",=Tz

= I x 10 6 o K) and Figure X

interest, and for the cases

lines).

(T,= T.= 2 x 10 6 o K) for each ion of

q" =0 (broken lines) and T$ = TL (solid

The above flow velocities were then used to compute, with the

equations of conservation of mass, the relative abundance (m$/M)? for

(m,/M)_ =!

each type of ion; these results are given in Figures XI and XII.
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ELECTRONS AND PROTONS (T I

FEXV (T 3 = T 2)

FEXV (T 3 = O)
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Figure IX. Graph of the Flow Velocity of the Electrons, Protons
and Ions as a Function of the Distance from the Sun.

One-fluid Model of Parker, T I =Tz _- To = 1 x 10 6 o K.
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Figure X. Graph of the Flow Velocity of the Electrons, Protons
and Ions as a Function of the Distance from the Sun.

One-Fluid Modelof Parker, T,_T2.-- To =2 x 10 6 o K
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Graph of the Relative Abundance of the Ions as
a Function of the Distance from the Sun. One-
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Model of Parker T,--7"_= I"o = 2 x 106 OK.
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D. Model of Sturrock and Hartle

Although the diffusion equations (23), (24) have the same general

form regardless of which theoretical model is used to describe the

coronal background, they are in reality far more difficult to solve

rigorously if the model of Sturrock and Hartle is used instead of the

isothermal model of Parker, since:

(1) The temperatures 1-, and "['2 are no longer equal and con-

stant throughout the corona.

(2) The polytrope indices o¢, and

constant throughout the corona.

0(,. are no longer equal and

(3) The dimensionless background flow velocity U must be

obtained numerically from point to point by solving a transcendental

equation which is far more complex than the one used previously.

An approximate scheme intended to use, as much as possible,

the techniques derived previously for the model of Parker, was there-

fore devised and will now be described. The basic approach consists

in dividing the region of the corona under study in a finite number of

regions (not necessarily of equal width) within each of which _ , Tz ,

¢_, and _zmay be assumed to be constant. The accuracy of this

83



technique should, in principle, improve as the number of such dis-

tinct coronal regions is increased. However, it may easily be seen

that this will quickly lead to very laborious matching problems when

passing from one region to the next. In practice, therefore, a com-

promise was reached, which was based on the fact that the variable

temperatures T. and T_.appear as dimensionless ratios ('V:IT i and

T,/To ) in the definitions of F. ..... F"S ; since I-_ does not vary as

rapidly with _ as "V, , the distinct coronal regions were selected by

considering "l-_./_ as the basic criterion; this led to the selection of

the following 5 regions:

5 _ _-/_O g 6 ,and

to 3. 3 approximately.

6 _ n./I_ 6[ 9 , where "1"i/'Y_ varies from i. 0

The rest of the treatment is identical to the approach taken with

the model of Parker, already described in Section C of this chapter.

A graph of V=V(J ) and i[ = U( _ ) is shown in Figure Xlll;

a graph of the relative ionic abundance is given in Figure XIV.
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Graph of the Flow Velocity of the Electrons,
Protons and Ions as a Function of the Distance

from the Sun. Two-Fluid Model of Sturrock and

Hartle, T o = 2 x 106 OK.
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V. CONCLUSIONS

It has been shown that it is theoretically possible for heavy

ionized atoms to diffuse upward in the solar corona, provided certain

conditions are met between the charge and mass of these particles

and the temperature of the ionized hydrogen background. A repre-

sentative sample of ions satisfying these conditions was selected, and

the diffusion equations were solved to obtain the flow velocity and

relative abundance of these ions in the region of the corona extending

as far as the lower solar wind, for two different theoretical dynami-

cal models of the coronal background.

These results, which are presented graphically, have shown

that

(1) In all cases, the ions will diffuse upward more slowly

than the background. For given background conditions, the flow

velocity of the ions will increase with the ionizing level of the atoms

(Coulomb scattering cross-section), and decrease with the mass of

the ions.

(2) For a given ion, the diffusion flow velocity will increase

as the ionic temperature increases to attain thermal equilibrium with
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the background protons. This is especially noticeable in the case of

light, slightly ionized atoms, such as He If; on the other hand, this

effect is not very important in the ease of massive, strongly ionized

atoms, such as Fe XV.

(3) In general, the relative abundance of the ions in the corona

will tend to increase slowly and gradually with height, after suffering

a slight decrease near the bottom of the corona. At a given altitude,

the abundance of a given ion will increase with the temperature (and

flow velocity) of the background.

(4} In general, the ions will "follow" the motion of the back-

ground fluid more closely over the entire range of integration, if the

coronal model of Sturrock and Hartle is used instead of the model of

Parker. This will have the effect of reducing variations in the rela-

tive abundance of the ions.
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APPENDIX I

Exact calculation of _(_

From elementary potential theory, the net acceleration of gravity

_(_) acting on a test particle of mass M s located in the solar atmo-

sphere at a distance _=_ from the center of the sun will be

_c_-__._(_)"_ _____._'a"R_- _o

where the first term represents the contribution of the central solar

core {of radius no), and the second term represents the contribution

of the other particie in the soIar atmosphere. We will now show that

this seeond term is negligible eompared to the first one, using, as an

example, the asymptotic value obtained by Parker for _ (see Chapter III)-

The resulting integral is rather difficult to evaluate exactly, so

that we evaluate instead an upper bound to its value by taking

This gives:

H-
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At the Earth's Orbit, _ _, 150_e , and the second term amounts

to about 3.61 x 10 -10 times the first term; closer to the sun, in the

corona, the correction due to the second term is even smaller and may

be neglected.
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APPENDIX II

Evaluation of ( _--_-h

[ 8_/Coll

We start from the expressions given on page 38 and 39, substi-

tute Maxwellian functions for _, and _,_ and evaluate the integrals:

= gL%_JJ i,_-.G,I t I,,I, /J ig.--,_,l J J

This requires the evaluation of the following integrals:

1)

- ,,.(,_, -¢5"

- _.[_- zaT. ¢.-_ ,." + v_* zc,7-r.) .G ]

v

.), ", v .,uaed Jo=¢ Y
t'

w
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I _ a._._,

_ul_--_'oI -l_--c.I

= "If e o_

cu I_-¢'.1 "-I._-_'.l

_ r,__

_ _-_'01"l,l_-_'.l

I

I
I

I
I

I

S "_ ol'_ ('vi e
+ v _ + ",...c_- - _'.1._]

= e v3olv _dO dlo

= -n [,_" + I,_- _'olq e dr

_ _.1_-_'ol _-

-7/
J

_ _.1_-_1 _
, F_?_ ,

_-_-_ _--_.1
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_e + aI_21

After substitution and simplification, this gives:
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